

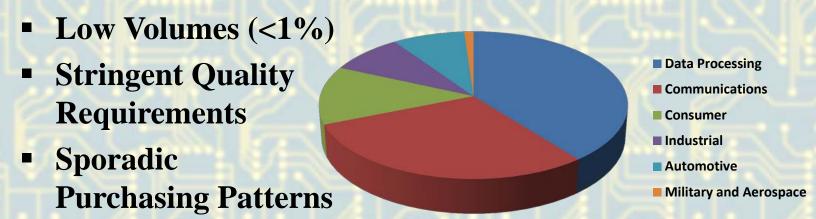
Future of QML Hermetic ICs

Timothy J. Flaherty
Golden Altos Corporation

402 South Hillview Drive Milpitas, CA 95035-5464 (408) 956-1010 tflaherty@goldenaltos.com

Historical Perspective

- From the start, Military and Aerospace could drive the semiconductor industry. How? \$\$\$
- First Integrated Circuits (ICs)
 - Slower than discrete solutions / low integration
 - Expensive (3-input NOR gate \$30 each) [1960s \$]
- Aerospace & Military Systems
 - Reduced power consumption
 - Smaller size
- Commercial World
 - Used discretes and/or tubes
 - Digital not important



Credit: Philco-Ford Microelectronics

Semiconductor Market

- QML Hermetic ICs (Integrated Circuits) occupy a unique initial cost point in the \$350 billion semiconductor market
- Cost always a concern. What drives that cost?

- Approaches to reducing costs include:
 - Commercial Off-The-Shelf (COTS)
 - Upscreened Parts

Qualified Manufacturing Line (QML)

- Reliability Driven
 - Defines levels of expectations
 - Standardize test methods
 - Helps control cost through competition
 - Pedigree traceability
- Qualification Testing
 - Specific failure mechanisms
 - Mechanical
 - Environmental

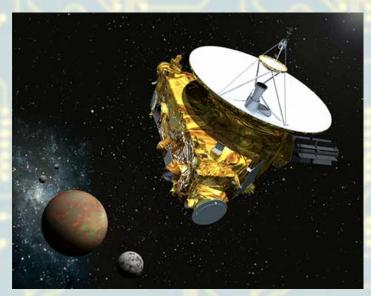
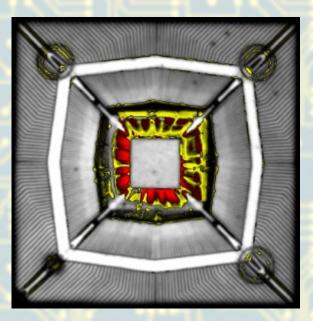


Image courtesy of JHUAPL/SwRI

Today's Market Forces

- Commercial
 - Cost driven
 - Economies of scale
 - Moore's Law + Rock's Law = Need to Feed Fab
 - Innovation "The Next Big Thing"
- Aerospace & Military Systems
 - Reliability
 - Traceability
 - Obsolescence concerns
 - Counterfeit devices



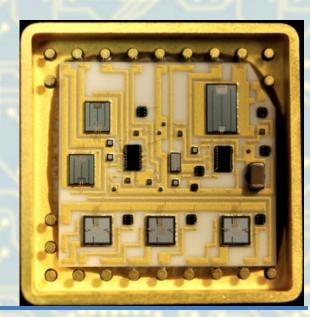
IC Designs and Longevity

- Aerospace & Military no longer "Wag the Dog"
- New Designs follow the commercial world
 - Wheel reinvention not cost effective
 - Market-drive advanced devices not typically offered in hermetic packaging include:
 - Networking controllers, transceivers
 - Multimedia audio/video processors
 - Die and/or Wafers often available for purchase
- QML Manufacturers aren't driven directly by the commercial world
 - Device longevity a prime consideration

- Plastic Encapsulated Microcircuits (PEMs)
 - When mass produced, initial cost advantage
 - Non-hermetic
 - Board assembly concerns
 - Moisture absorption
 - Delamination
 - Cracking
 - Contaminant ingress
 - Long term reliability issues
 - Harsh environments
 - Spares storage

Credit: Sonoscan

- COTS and Upscreening
 - Parts require additional testing
 - Parametric values over temperature/voltage
 - Mechanical testing
 - Environmental testing
 - Limited (if any) lot/wafer traceability
 - Die not inspected to military screening levels
 - No control over fabrication changes or stock rotations
 - PEM disadvantages remain



QML Hermetic Integrated Circuits

- Long Term Reliability
 - PEMs "breathe"
 - Hermetic parts don't
- The Aerospace community considers hermeticity key for higher reliability
 - Pushed JEDEC/DLA for tighter leak rates during seal testing
 - Already a hybrid requirement
 - Monolithics to follow

- QML Hermetic Integrated Circuits
 - Thermal Characteristics
 - Lower Thermal Resistance
 - Key to performance at high temperatures
 - Improved life expectancy (MTBF)
 - $\blacksquare T_J v. T_C v. T_A$
 - Minor AC Timing Derating
 - Traceable Inline Screening
 - Lot Homogeneity
 - Failure Analysis
 - Lot Risk/Containment

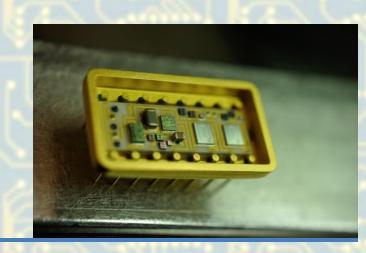
PEM / COTS / Upscreen Savings?

- Total Costs must be considered
- Costs Adders for PEMs/COTS/Upscreens include:
 - Design effort for thermal considerations (NRE)
 - Documentation for complete traceability (???)
 - Additional environmental testing (HAST, Autoclave)
 - Additional electrical testing (extended ranges)
 - Post assembly inspections (CSAM)
 - Reliability of spares (long term storage)
- Total life cycle cost could exceed Hermetic QML ICs
- Trading Quality for Initial Cost False Savings?

Qualified Manufacturing Lines

- Defense Logistic Agency (DLA) certified QML Manufacturers:
 - Forty-one (41) MIL-PRF-38535 (Monolithic)
 - Thirty-three (33) MIL-PRF-38534 (Hybrid)
- QML Hermetic Products
 - SMD Program, M-38510 Slash Sheets,
 QML Data Book products
 - Device/Package Configurations
 - **38535: 19,000 part types**
 - **38534:** 1,300 part types

Qualified Manufacturing Lines


- Currently Seven (7) QML Assembly Facilities
 - Assembly process from wafers/dice to qualified units
 - Build QML product not offered by the OCM
 - Full Military Screening throughout the assembly process
 - Optical inspections, die shear, bond strength
 - Inline quality monitoring
 - Traceability to the wafer level
 - End-of-Life options
 - Fully assembled or store in wafer/die form

Conclusion

- Over the decades, the death knell for QML Hermetic ICs has rung many times
- Still, QML Hermetic ICs are alive and well
 - Committed Manufacturing Base
 - Package Characteristic Advantages
 - Package Assembly Advantages
 - Standardization
 - Set Expectations
 - Pedigree Traceability
 - Addresses Obsolescence

